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Statistical Analyses of the Relative Risk
by John J. Gart*

LetPi be the probability of a disease in one population and P2 be the probability of a disease in a second
population. The ratio of these quantities, R = Pl/P2, is termed the relative risk.
We consider first the analyses of the relative risk from retrospective studies. The relation between the

relative risk and the odds ratio (or cross-product ratio) is developed. The odds ratio can be considered a
parameter of an exponential model possessing sufficient statistics. This permits the development of exact
significance testsand confidence intervals in the conditional space. Unconditional tests and intervals are also
considered briefly. The consequences of misclassification errors and ignoring matching or stratifying are
also considered. The various methods are extended to combination of results over the strata. Examples of
case-control studies testing the association between HL-A frequencies and cancer illustrate the techniques.
The parallel analyses of prospective studies are given. IfPi and P2 are small with large sample sizes the

appropriate model is a Poisson distribution. This yields a exponential model with sufficient statistics. Exact
conditional tests and confidence intervals can then be developed. Here we consider the case where two
populations are compared adjusting for sex differences as well as for the strata (or covariate) differences
such as age. The methods are applied to two examples: (1) testing in the two sexes the ratio of relative risks of
skin cancer in people living in different latitudes, and (2) testing over time the ratio of the relative risks of
cancer in two cities, one of which fluoridated its drinking water and one which did not.

Retrospective Studies
McKinlay (1) has reviewed the more general as-

pects of the design and analysis of retrospective
studies.

The Odds Ratio
Let pi be the proportion of individuals of one

population (smokers, genetic trait carriers, etc.) and
qi be the proportion of the second population (e.g.
nonsmokers, etc.) among the "cases." Similarly de-
fine p2 and q2 in the controls. The ratio or cross-
product ratio was defined by Fisher (2) to be:

= (piq2)/(p.q1) (1)

where ql = 1 - pi and q2 = 1 - p2. Let v be the
frequency of the disease (or cause of death) in the
total of the two populations.
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Consider the relation of + to R. Using Bayes'
theorem, we have, following Cornfield (3,4) and
arguments implicit in Doll and Hill (5),

Pi (p1fr)I[p1si + p2 (1- 7)]

P2 (I1-p1)ff/[(l -p 1)fr + (1p2)(-)
(2)

R = 1p (1i-p2) + (1- p1)ir/(l - )
1-pi p2 + pi 7(1 -ir)l

(3)
If the disease or cause of death is rare, TI/(l - ir) t 0
and R t- . Sometimes the relative risk and the odds
ratio are used as interchangeable terms. It should be
noted that this argument depends on the rare disease
assumption (6-8). The important point is that * can
be calculated frompi andp2, which can be estimated
from a case-control study.
The odds ratio has a history of use in statistical

theory independent of this argument. Fisher (2)
showed that it is the parameter in the noncentral
distribution of the exact conditional test. The defini-
tion of interaction in 2 x 2 x k contingency tables
(9,10) is the equality ofthe odds ratio over the several
2 x 2 tables. Other interesting properties of this
measure are given in Armitage's (11) review.
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Conditional Inference on *.
Let xi be the number of individuals of the first

population in a sample of n 1 cases and let X2 be the
number of individuals of the first population in a
sample of n2 controls. We assume xi and X2 to be
independent binomial variates with parameters pi
and p2, respectively. It is convenient to reparame-
terize to a logistic form,

exp {,8 + (X/2)}
pi =

I1 + exp 1,8 + (X/2)}

exp {/, - (X/2)}
1 + exp {/8 - (X12)}

This implies that + = ex and that X = ln (pllqi) - In
(p2/q2), the difference of the logits. In other words,
inferences on X are equivalent to those on qp (or R
under the rare disease assumption). The likelihood
for this model is:
L (X,4) =
ni n2 exp -[(Xl-X2) X/2] + (X1 + x2),/}g(X,,8)

(5)
The form of this likelihood implies thatxi andxi + X2
are a minimal set of sufficient statistics. Inferences
on X should be made by considering the conditional
likelihood of xi given xi + X2 = x.is fixed (12).
This yields

h(xlk.; O,) =

respectively (4,13). Note that these limits will always
agree with the exact significance test in the sense that
ifP < a/2, qio (tL, u) and ifP > a/2, tIo E (qL,tu).
Cox (14) [see also Birch (15)] showed that the condi-
tional maximum likelihood estimator of qp, A'cmi, is
given by the solution to the equation,

xi = E(Xilx.;*cml) (9)
where Xi indicates the random variable whose ex-
pectation is calculated from Eq. (6). It is interesting
to note that this is not, in general, equal to 4pami =
pi q2/(p2qi), where the usual sample proportions are
substituted for these parameters. Computer pro-
grams for calculating all these exact conditional
methods are available (16,17).
The asymptotic approximations to these methods

are rather easy to apply. The chi-square test of q = 1
is calculated by using the first two moments of the
hypergeometric distribution. With this continuity
correction, this is

[Ixl - E(Xilx. ;, = 1)l-V2]2
V(Xilx.;qi= 1)

(10)

For the general case of tp = 4o, it is necessary to find
the value ofiX1, for which, in the asymptotic distribu-
tion

E(Xllx.;qo) = Xi

This is the solution to the equation
Xi (n2 - X. + X1)

=(0=
(nl - X1l) (X. - X1l)

(1 1)

(12)

Here we assume, implicitly, that x. s n 1, and that we
choose the solution to the quadratic, X1, such that
00 X1 S min (ni,x.). The variance ofXi is given by(6) (4,18),

as first noted by Fisher (2). One may use Eq. (6) to
test exactly a hypothetical value of qi, say Ho: + = tlk
vs. Hi : J1 > qo. The P value is then

X.

P = Y h(ilx.; 4io)
i = Xi

(7)

If *o = I(X = 0 orpi = p2), h(xik. ;1) reduces to the
hypergeometric and the Fisher-Irwin exact test re-
sults. Exact confidence intervals (with confidence
coefficients - 1 - a) are calculated from Eqs. (8)

V(Xi x. ;Io) =

A+A + A

Xi X. -Xinfl-xi n2 - X. +Xi (13)

An approximate chi-square test of ti. = io is given by

(llX, - 1/-2)2
X2corr (+O) = (

V(Xilx.;4Io)
Sh(ilx.;+Pu) = a2

i=X

Y. h (ilx.;ipu) = a/2
i

where 4iu and qPL are the upper and lower limits,

The asymptotic maximum likelihood estimator is
(8)

ipami = Xl(nf2 - X2)/[X2 (nfi - xi)] (15)

The asymtotic confidence limits are found by solving
the quartic equations (4,13),
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2 {Xi -E (XiIx.;p) ±}2 (16)
V (Xi1x. 6)

where x,,2 is the upper percentage point of a chi-
square variate with one degree of freedom. The
smallest root with the -½ is denoted by X1L and the
largest with the plus sign is denoted by xlu. The
approximate 1-a confidence limits are then

IL =

and

X1L (nl2 - X. + X1L)

(X. -( 1L) (n X

+ 1L)

xlu (n2 - X. +XlU

(x. -Xlu) (ni -Xku)
As an alternative to solving quartics, Gart (19), fol-
lowing a suggestion by Cornfield (4), has given a
much simpler method for solving Eq. (16) based on
an iterative procedure involving only the solution of
quadratics. Gart and Thomas (20) assessed, in the
conditional space, the various approximate methods
of finding confidence limits for tp. They found
Cornfield's method [Eq. (14)] to be clearly superior
to logit or Fieller Theorem methods. They recom-
mended that Cornfield's method be used for 95%
limits if the minimum ofkX1, x. - xi,n 1 - X1, and n2 -
x. + X1 in Eqs. (17) exceeds 1. For 99%o limits this
minimum should exceed 3. Otherwise an exact cal-
culation, an approximate graphical solution (21) or
Gart's (22) Method II is recommended.

Unconditional Inference on if
If we wish to consider inferences in the uncondi-

tional space (where x. is not considered fixed) the
asymptotic methods considered above still hold. It is
appropriate to drop the 1/2 correction from the X2%0C,
and from the calculation of the confidence coeffi-
cients [Eq. (16)]. As before, the uncorrected chi-
square tests will also agree with uncorrected confi-
dence limits in havingP < a/2 when the limits do not
cover qio and visa-versa.

Recently Miettinen (6) has introduced a "test-
based" method for finding confidence limits. For the
relative risk this involves first calculating the chi-
square test of the 2 x 2 table, X2. The confidence
limits for t, are similar to those based on a logit
transformation with the logit variances estimated in-
directly from the X2 test statistic:

4IU,L = tlaml 1 + (Xa/21X) (18)

This method will always agree in covering tp = 1,
whenP > a/2 and not covering tI = 1 when P < a/2,
where P is calculated from the chi-square test. It is

not clear from Miettinen's papers (6,7) whether he is
recommending his method in the conditional or un-
conditional space. Since it is essentially the logit
method, it is likely to perform similarly to that
method in the conditional space. Gart and Thomas
(20) found the logit method to yield much too narrow
limits (i.e., true confidence coefficient < 1-a) in the
conditional space. In the unconditional space Hal-
perin (8) pointed out that Miettinen's argument
strictly holds only when 4 = 1 (or tp = qio if the
chi-square is applied to testing iP = tjo). He stated
that asymptotically the true confidence coefficient
will be less than 1-a for any qi 4 1 (or *o). Miettinen
(7) replied "that the principle, properly understood,
is flawless . . .", and that a "systematic evaluation
of the accuracy of test-based confidence limits are
[sic] obviously needed." Apparently he claims his
limits are adequate for + - 1. Gart and Thomas (23)
have evaluated exactly (by enumeration of all the
points) the lower limit of the unconditional confi-
dence coefficient for both Cornfield's method [Eq.
(16)] (omitting the ½ correction) and Miettinen's test
based limits, [Eq. (18)] omitting the continuity cor-
rection from the chi-square test). The results are
given in Table 1.

It is seen that the Cornfield's and Miettinen's
method have the same confidence coefficients for
pl = p2 or qp = 1. However, as pi and p2 diverge,
Cornfield's method is as close or closer to 0.95 than
is Miettinen's method. In every case of Table 1
where tp t 1, Miettinen's method yields coefficients
less than 0.95 and the deviation is quite large for
*>> 1. In such cases we see the test-based limits are
not correct in principle, in asymptotic theory, nor in
exactevaluation. One can only agree with Halperin's
(8) assertion that they "should not be used since
methods not suffering this disability, even if compu-
tationally somewhat more onerous, are always
available." The exact or Cornfield's limits can be
quickly found by program (16,17), and the iterative
method suggested by Gart (19) is not that difficult to
do on a small pocket calculator. In any case, the true
appropriate "test-based" interval is the modification
of the chi-square test given by Cornfield's method
[Eq. (16)], since that equation reduces to the usual
chi-square statistics [Eq. (10)] when ti = 1. Fisher
(13) showed this relation very clearly.

Misclassification Errors
All the results given above assume only sampling

variation is present. The cases and controls are as-
sumed to be classified correctly as to their popula-
tion (smoking status, genetic type, etc.). Consider
now the effect of misclassification. In the cases let O1
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Table 1. Exact upper bounds of the confidence coefficients of
Cornfeld's (C) and Miettinen's (M) 95% limits on * in the
unconditional sample space for samples of size 50 (ni = n2 = 50)"

p2

0.01

0.05

0.10

0.25

0.50

pi

0.01
0.05
0.10
0.25
0.50
0.75
0.90

0.05
0.10
0.15
0.25
0.50
0.75
0.90

0.10
0.15
0.20
0.25
0.50
0.75
0.90

0.25
0.50
0.75
0.90

0.50
0.75
0.90

C

0.997
0.942
0.946
0.947
0.944
0.950
0.960

0.956
0.962
0.950
0.960
0.961
0.961
0.960

0.949
0.947
0.951
0.950
0.950
0.949
0.942

0.949
0.952
0.951
0.949

0.943
0.952
0.950

M

0.997
0.752
0.505
0.333
0.323
0.321
0.320

0.956
0.814
0.867
0.885
0.865
0.842
0.813

0.949
0.858
0.902
0.932
0.915
0.901
0.883

0.949
0.945
0.933
0.943

0.943
0.945
0.915

aData of Gart and Thomas (23).

be the probability that a first population individual
(e.g., smoker) be classified in the second population
(e.g., nonsmoker), and let 41 be the probability that a
second population individual (e.g., nonsmoker) be
classified as a first population individual (e.g., a
smoker). In the controls let the corresponding prob-
abilities be 62 and 42. The apparent odds ratio, 4,pa
would then be given

(1 -O1)pI + 4lgI1-0(1-2)p2 - 2q2]
(1 - 62) p2 + 42q2 0-(1- O)pl - 4lql-

(19)
Bross (24), in a significant paper, considered the case
where the misclassification errors were equal in the
cases and controls: 01 = 02 = 6 and 41 = 42 = 4.

It can then be shown that

*4a = [p- p2((-H)+ ]
q2 p26(4,- 1) 1

ql ql(1-4) + p2J

(20)

If we define the populations such that 4, > 1, it
immediately follows the 4,a -S 4J, the true odds ratio.
The equality holds only when 4 = 1 or 4 = 6 = 0.
Thus under this model the observed odds ratio can
only underestimate the true odds ratio.

If 01 7 02 and or 1)i #42 it is not possible to make
any general statements. Depending on the parame-
ters, p,a may be less than or greater than 4,. Gold-
berg's (25) paper is an excellent discussion of the
problems of misclassification and contains an ex-
tensive bibliography [see also Copeland et al. (26)].

Heterogeneity of Response
The methods derived above assume a binomial

distribution. This implies that in both the case and
control groups each individual has the same prob-
abilities,pi andp2, respectively of being from popu-
lation 1. In practice this is seldom the situation. Quite
often, the cases and controls are matched or paired
by age, sex, and other factors. Then it is reasonable
to consider not a singlep 1 and a singlep2 but a series
of them for each pair, Plk, k = 1, 2, . . ., n, and P2k,
k = 1, 2, ..., n. The usual model assumed is that
4 = (Plkq2k) I (P2klqlk), i.e., that the odds ratio is
constant over the pairs (27). The pairing is often
ignored in estimating the odds ratio; the results being
pooled into a single 2 x 2 table. Let p,, be the pooled
estimator. Armitage (11) showed that asymptotically

E (4,,) = 4, wlw' (21)
where Wk = P2klq2k, w = (Eq1kwk)I(IqIk), and w'
(Yq2kWk)I(1q2k). Using the fact that q2klqlk = (1 + Wk

/I(1 + Wk) is an increasing function of Wk, Armitage
goes on to show that w' > w and thus that 1 <E (4,p)
<4. Siegel and Greenhouse (28) showed a slightly
less general result and give other references on the
topic. Thus it is concluded that pooling can only
underestimate the odds ratio.

Differential Bias in the Section of Cases and
Controls

In the case we have just considered the hetero-
geneity of the response was balanced by having a
one-to-one correspondence in the matched pairs. If
there are differing biases in the selection ofcases and
controls, the direction of the bias in the pooled odds
ratio cannot be predicted. Consider the rather ex-
treme, hypothetical examples (29) shown in Table 2.
It is seen that the pooled estimator may give a com-
pletely different picture than the estimators from the
individual strata. We consider appropriate models
forthe combination of strata in a subsequent section.
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Table 2

Example I Example 2

k Xlkln/lk X2k/fn2k k Xlkln2k X2k/fn2k tIk

1 10/20 150/300 1.00 15/20 160/300 2.63
2 250/300 50/60 1.00 150/300 5/20 3.00

Totals 260/320 200/360 p= 3.47 165/320 165/320 = 1.00

Application
The human leukocyte antigen system (HL-A) is a

genetic system having several alleles. The allele
HL-A2 was implicated by several authors as predis-
posing children to acute lymphocytic leukemia
(ALL). Rogentine et al. (30) did a case-control study
with fifty patients (n 1) who were examined at the
National Cancer Institute. The control group were
200 (n2) normal blood donors. As the genetic trait is
autosomal, there was no need for matching on sex.
Race was considered; all the cases and controls are
white. Among the cases, 36 (xi) individuals belonged
to the HL-A2 population (72%) and among the con-
trols 83 (X2) possessed this antigen (41.5%). For these
numbers we find from Eq. (9) that lkcmi = 3.61 and
aml= [(36) (117)]/[(83) (14)] = 3.62. The exact test
of * = 1 yields a one-tailed P = 0.00009 while the
approximate test [Eq. (9)] yields P = 0.00011. The
95% and 99%o confidence limits are given in Table 3.
It is noted that both the exact and approximate P are
< 0.005, and thus both corresponding 99% confi-
dence intervals exclude i, = 1. Note also that the
discrepancies between the exact and approximate
methods are small throughout.
One explanation for the observed association be-

tween HL-A2 and ALL considered by Rogentine et
al. (30) was that possession of HL-A2 conferred sus-
ceptibility to ALL. However, the 50 patients typed
for the HL-A system were not an unbiased sample of
the patients admitted over the period of years con-
sidered. In a later paper Rogentine et al. (31)
analyzed a larger series of 137 patients cared for at
NIH between 1962 and 1971. The HL-A typing was
not begun until 1969 so that those diagnosed between
1962 and 1968 must necessarily have survived on
year. For 1962-69, there were 32 in the typed series
among the total of 279 patients (or 11%). In the

Table 3

95% 99o

Exact: 1.77 s q 7.72, 1.45 s --- 9.79,
Approximate: 1.76 s q 7.57, 1.43 s --s 9.28.

1969-71, the 53 typed cases represent 52% of the
cases in that time period. If we look at the HL-A2
frequency by year of diagnosis we find the results
shown in Table 4. There is no significant difference
between the 1969-71 frequency and the controls
while the 1962-68 frequency is significantly different
from both the 1969-71 frequency (P < 0.01) and the
control frequency (P < 0.001). Furthermore, it was
found that of the eighteen patients surviving 1500
days from diagnosis 15 (94 83%) had HL-A2. It was
concluded that HL-A2 may not confer susceptibility
to HL-A2, but, in fact, may be associated with longer
survivorship.
Whenever one selects by a nonrandom mechanism

from a larger set of cases a danger of bias is present.
Here there is a bias in calendar date of admission and
the fact that the cases must survive to the time the
study began. Also they must survive to reach a re-
search hospital.

Combination over Strata
Consider now the situation where the cases and

controls may each be divided into several matched
strata or blocks. Let k= 1, 2, . . ., K be the index for
the strata. Extend the notation used above by adding
a subscript k, i.e., Plk, P2k, nlk, n2k, 13k; k = 1, 2,
K. However, let the X remain constant over the
strata. This implies the Ik = (P1kq2k)/P21q1k) ex
i,, is constant over the strata. Thus we are interested
in making inferences on the common odds ratio, i, in
the several 2 x 2 tables. Other models as possible,
but this one has several convenient consequences:
(1) it leads to a minimal set of sufficient statistics for
which conditional inference is valid; (2) it is equiva-
lent to the "no interaction" model of Bartlett (9) for

Table 4. HL-A2 frequency among all cases by year of diagnosis.

Year of Proportion with
diagnosis HL-A2 (%)

1962-68 27/32 (84%)
1969-71 28/53 (53%)
Controls 177/401 (44%)
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2 x 2 x K contingency tables; (3) Radhakrishna (32)
has shown this model to be robust with respect to
asymptotic efficiency relative to other possible mod-
els, such a difference in logarithms or the arc sins of
the square root of the p; (4) Asymptotic uncon-
ditional inference can be conveniently employed
using the logit transformation (33).
The methods for analyzing this model has been

extensively reviewed by Gart (19). We shall limit
ourselves here to sketching the main points.
The extended model is easily shown to possess a

minimal set ofK+ 1 sufficient statistics: xl. = 4kX k
and x.k, k = 1, 2, . . ., K. Optimal inferences on the
common 4' (or X) can then be based on the conditional
distribution ofxl. given theX.k are all fixed. This leads
to a product of K independent generalized hyper-
geometric distributions [Eq. (6)]:
h (Xll, X129.* XlkIX.l X.2, * * ., X.k; 4')

llkhk(Xlklx.k; 4) (22)

Exact tests of 4' = t'o (or 4 = 1) and exact confidence
limits for 4' are found from Eq. (22) in much the same
manner as for the single stratum case (34,35). The
conditional maximum likelihood estimator (15) is the
solution to Eq. (23):

x1. = E(X1.jx i, x2, ..., XK;4cml) (23)

in parallel with the previous result. In addition here,
an exact test of the model is that 4' is constant. This
test is based on the conditional distribution of xil,
X12, . .. X1K.,givenx . andx.,1 X.2, . .. X.2, . .. X.K are all
fixed (9). All these conditional "exact" methods are
implemented in a program by Thomas (17).

It shall be noted that the above theory yields the
usual methodology for the matched case, nlk = n2k =
1 for all k. An exact form of McNemar's test is given
by Eq. (22), and tp,, is the ratio of unlike pairs (27).
The asymptotic methodology can be extended

rather easily. Cochran (34) introduced the approxi-
mate test for 4 = 1, based on a chi-square statistic.
We give here the somewhat modified form [due to
Mantel and Haenszel (36)] of Cochran's test:

(jX1. - Y2kE(Xlklx.k; 4 = O) -1/2)'
YkV(XlklX.k; 4' = 1)

where the means and variances are the computed
from the hypergeometric distribution.
Gart (37) discussed the asymptotic noncentral

conditional distribution. For the general case of 4' =
4'o, we need to find the values of 1k, k = 1, 2, . . ., K,
for which, in the asymptotic distribution, we have

E(XlklX.k; 4') = Xlk k = 1, 2, . .., K

This involves solving K quadratic equations equiva-
lent to Eq. (12). The mean of the asymptotic normal
distribution of X1. is then,

E(Xl.|X.1, - * * X.k; 4'O) = klk (25)
and the variance is

V(X1.IX.1, ... x.k; 4'o) = 4kV(Xlklx.k; 4o) (26)

where the V(Xlk X.k; o) is given by an equation
similar to Eq. (13). The test for 4' = 4'o is found from a
formula equivalent to Eq. (14) and confidence limits
from formulas equivalent to Eqs. (16) and (17) [(see
also Gart (37)]. The asymptotic maximum likelihood
estimator is given by the solution (37) to Eq. (27)

A

Xl. = E(X1lx.IX, X.2, * * * X.k; 'qaml) (27)
which involves the simultaneous solution ofK qua-
dratic equations.
The set of equations solved in finding 4aml is the

same as those cited by Bartlett (9) and Norton (10) in
deriving the approximate chi-square test for interac-
tion in 2 x 2 x K contingency tables. The usual
goodness of fit chi-square formula is used, with the
fitted values being the fitted entries to the table aris-
ing from the solution to Eq. (23). Zelen (38) sug-
gested a rather simple approximate test for interac-
tion in 2 x 2 x K tables. Halperin et al. (39) pointed
out that this test was not valid for values of 4' t 1,
although it is good approximation when 4' - 1 and the
n's are not too disproportionate. However, the
Bartlett-Norton test is preferred.

Unconditional Inference on if for the Com-
bined Case
The analysis of the common 4' in the unconditional

space is most easily handled using logit arguments.
Woolf (33) used logits to find point estimators, inter-
val estimators, and interaction tests for this model.
Haldane (40), Anscombe (41), Gart and Zweifel (42),
and Cox (21), modified and improved somewhat the
approximations to the mean and variance ofthe logit.
Gart (29) showed the logit point estimator to be effi-
cient and derived two other efficient point and inter-
val estimators forthe common 4'. Plackett (43), Griz-
zle, Starmer, and Koch (44), and Cox (21) extended
the arguments of Woolf to more complex situations.

An Application of Combination of Strata
Methodology

It has long been known that the incidence of
nasopharyngeal carcinoma (NPC) has an elevated
incidence among Chinese and Chinese-related
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populations. This has led to the speculation that this
susceptibility has a genetic basis. Simons et al. (45)
studied its association with the joint occurrence of
HL-A2 and SIN-2 in a case control study among the
Chinese population of Singapore. The data and
analyses are reproduced in Table 5. Note that the
strata here refer to dialect spoken by the individuals
involved. The combined analyses (last column)
clearly shows an association of this genetic trait with
NPC. The analyses of the individual dialect groups
shows only the Hokkien and Teochew groups with a

significant P value. However, the interaction tests
do not show any significant differences among the
individual estimators of *. For comparison purposes
the analyses of the pooled estimator is shown in the
penultimate row ofTable 5. As the probabilities vary
little among the strata, the results differ little from
the combined analyses. The authors note that the
cases with SIN-2 had poorer survival than those
without it. Thus it is not thought that survival bias is
present in this study. The authors suggest that the
HL-A2-SIN-2 occurrence may confer susceptibility
to NPC.

Prospective Studies
Binomial Analyses

In prospective studies the proportion of cases or
deaths is directly observed in the two populations,
say, Pi = yl/Nl and P2 = y2/N2. The unconditional
maximum likelihood estimates R = P1/P2. One can
test R = 1 by the Fisher-Irwin exact test as
P1Q2/P2Q 1 = 1 is equivalent to R = 1. However, for
the binomial model, Y. is not an appropriate ancillary
statistic forR (46), and thus conditional inference on
R is not possible. Buhrman (47) showed that when

inverse sampling is used (sampling until Ni - yi

non-cases and N2 - y2 non-cases are found in the
respective populations), exact conditional confi-
dence limits for R can be derived (48, 49). These do
not appear to be useful in the usual epidemological
problem. Thomas and Gart (50) derived "exact"
limits for R from the exact limits on + assuming all
the marginals fixed. These limits have the required
confidence coefficient in the conditional space if Pi
andP2 are such that NiPi + N2P2 -y., but they may
be below the required value otherwise. Katz et al.
and Gart and Thomas (23) investigated the Gart-
Thomas limits in the unconditional space and found
them yield true confidence coefficients near the
nominal values. Katz et al. also sug,gested basing
limits on the logtransform, i.e., let ln R = lnPi - ln
P2 be approximately normally distributed, and found
useful limits on R in a fashion analogous to Woolf's
limits on q,.

The logarithmic transformation may be used in the
unconditional space to analyze the combination of
R's over several strata. Combined estimators, confi-
dence limits, and "interaction" (equality of the R)
tests follow in a manner completely analogous to
Woolf's (33) results. Radhakrishna (32) also investi-
gated the robustness and power of the combined test
of a common R.

Analysis ofR in the Poisson Model
As most diseases have a low incidence and usually

prospective studies are concerned with large popu-
lations, it is appropriate to approximate the distribu-
tion of the numbers of cases by the Poisson distribu-
tion. If we also assume an exponential regression of
the mean of the Poisson variables on the population
and strata effects (52, 53), the model yields minimal

Table 5. Analyses of a case-control study of the association between HL-A2/Sin-2 occurrence and
nasopharynglol carcinoma in Chinese populations.a

Proportion HL-A2/SIN-2 (%) Exact analyses
(95% limits)

Dialect Cases Controls cml 4'

Cantonese 13/33 8/30 1.77 0.2115 0.545 c 4 5 6.06
(39%) (27%)

Hokkien and 19/54 5/43 4.07 0.0064 1.29 c 4 c 15.47
Teochew (35%) (12%)
Other 7/23 5/16 0.964 0.6138 0.199 s 4 s 4.93

(30%) (31%)
Pooled totals 39/110 18/89 2.22 0.0103 1.12 c 4.53

(35%) (20%)
Combined Exact interaction test: p = 0.2584 2.17 0.0124 1.09 c 4 s 4.45
analyses Approximate interaction test: p = 0.2385

aData of Simons et al. (45).
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sets of sufficient statistics. Consider the several
strata case with Poisson means,

E(Ylk) = Nlk exp {k + (a12)}
E(y2k) = N2k exp {k - (a/2)}

k = 1, 2, ... ., K (28)

This model assumes that R = PldP2k = e& (k = 1, 2,
.. ., K), that is, the R is constant over strata. The
likelihood of this model yields K + 1 sufficient
statistics y 1. and y.k, k = 1, 2, . . ., K. Conditioning on
the Y.k yields a product of K independent binomial
distributions exactly analogous to the hypergeomet-
fic distributions found in the binomial analyses of q.
The details of the estimation of the common R, exact
and approximate tests of R =1 [cf. standardized
mortality ratio (54)], and tests of the model are given
in Gart (55).
Gart (55) extended this model to comparing popu-

lations and adjusting for the sexual composition of
the two populations. Letting the second subscript
denote sex (1 = male, 2 = female), we assume that,

E(Yllk) = Nllk exp {f3k + -k + (a/2)}
E(YI2k) = N12k exp {fk - -k + (a/2)}
E(Y21k) = N21k exp {k + 0k- (a12)}
E(Y22k) = N22k exp {k - ck - (cI2)} (29)

where o-k is the sex effect on the incidence. This
model assumes the population ratios within sexes are
constant over age and strata, that is,
R.Hk = Pllk'P21k = &

= P12klP22k = R.2k
k = 1, 2, ..., K (30)

The sex ratios are constant within strata, but may
vary over strata [see Gart (55) for details of the
analyses of this model, particularly for testing a = 0,
the lack of population differences.]

Analysis of the Ratios of R in the Poisson
Model
The more interesting model to consider is whether

the ratio of population ratios is constant over the
sexes
Pk(P) = R.lkIR.2k

= (Pllk P22k)I(P21k P12k) = , (P)
k = 1,2, ...,K (31)

This can be tested by considering the exponential
model:

E(Y1lk) = Nllk exp {13k + ak + Crk + (14)}
E(Y12k) = N12k exp {13k + ak - -(k4)}
E(Y21k) = N21k exp {k - ak + 0-k -(4)}
E(Y22k) = N22k exp {k - ak - 0k + (/4)}

k = 1,2, ...,K (32)

Clearly *k' (P) = exp {A}, and tests on A are equiva-
lent to tests on t (E). This model possesses the
minimal set of sufficient statistics, Y1i., Y. .k, Y.lk, and
Yl.k, K = 1, 2, * . ., K. The conditional distribution of
Yll. given all the other sufficient statistics yields a
product ofhypergeometric distributions in parallel to
the conditional distribution for the common odds
ratio [see Eqs. (6) and (22)]. The fixed marginals in
theK 2 x 2 tables here are Yl.k, Y2.k, Y.1k, andy.2k. The
parameter is not qi but qP (p) tPk (N), where

Pk(N) = N1 lkN22k

Nl2kN2lk k = 1, 2, ..., K
(33)

If the qPk (N) = 1, fork, the two analyses are exactly
equivalent with the total cases playing the role of the
n. However if they are not, the test of Ho: i (E) = 1
involves a noncentral distribution of each of K
hypergeometric variates. For this case, Gart (55, 56)
has derived the detailed tests of 4i (P) = 1, point
estimators, and tests of the model. If all the k (N) -

1, the binomial analysis and this analysis will yield
quite similar results. If one is comparing dispro-
portionate populations, such as native-born and im-
migrant populations, the 4Jk (N) may depart consid-
erably for unity and the Poisson analysis is the more
appropriate.

Applications of the Poisson Model
We consider two cases in which population based

data are used to test hypotheses concerning cancer
incidence.
Example 1: Non-melanoma Skin Cancer. Scotto et

al. (57) studied the incidence of skin cancer other
than melanoma among whites in four areas of the
U.S.A. Latitude greatly effects the incidence of this
disease. It is of interest to compare the incidence in
the northernmost population studied, Minne-
apolis-St. Paul, with the southernmost, Dallas-Fort
Worth, These data are presented in Table 6. Clearly
Dallas-Fort Worth has higher rates than Minne-
apolis-St. Paul. For males R the average ratio is R,1
= 2.73 (z = 23.38, p < 0.0001) and for females, the
average ratio isR.2.= 2.23 (z = 15.80,p < 0.0001). It
is also clear that male incidence is higher than the
female incidence. However, is the ratio of area inci-
dences higher for males than for females? Or equi-
valently is the relative risk for males to females
higher in the southern population than in the north-
ern population? This is answered by testing whether
+(P) = 1 (or A = 0). The asymptotic maximum likeli-
hood estimator of +(P) is +(P) = 1.19, which, it
should be noted, is not simply the ratio of the R. The
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combined normal deviate test yields z = +2.44 (p -

0.0073). Table 6 also gives the individual estimates
and tests by age group. In two of the early age groups
and the oldest age group qk (P) is less than one. These
are based on such small numbers as not to be signifi-
cantly different from one. The three ages groups
spanning 45-75 yield qik (P) appreciably greater than
one and each yields a normal deviate test which is
nearly significant. There is not, however, any sig-
nificant variation among the Jk (P) as the goodness of
fit test is nowhere near significance. These data
clearly show that the North-South incidence ratio is
significantly higher for males than for females.

It should be noted that these populations have
roughly proportionate distributions by sex. The qlk
(N)'s vary from 1.055 in the youngest age group to
0.910 in the oldest group. Thus we may expect the
usual binomial analysis, when applied to the cases

(Yllk plays the role ofXlk; Y21k, the roleofX2k, YL.k, the
role of n.1k, Y2.k, the role of n2k, etc.) to yield similar
results. In applying the binomial analysis we find i =

1.18 (as opposed to 1.19) and z = 2.28(p 0.0112) as

opposed to z = 2.45 (p 0.0073).
Example 2: Fluoridation. A recent report in the

U.S. Congressional Record (58) attempted to link
cancer to the artificial fluoridation of the water sup-
plies. In examining this question, Hoover et al. (59)
used, among other data, the cancer incidence data of
the Second (60) and Third (61) National Cancer Sur-
veys. The second survey was done in 1947-48 and the
third survey was done in 1969-71. Hoover et al. noted
that Denver was not fluoridated in 1947-48, but by
1955, 66% of the area was fluoridated. On the other
hand, Birmingham was largely unfluoridated
throughout the time period, being only 3.2% fluori-
dated in 1970. Thus if fluoridation has an effect on

cancer incidence we might expect the rates in Den-

ver to increase relative to those in Birmingham over

this time period.
As once again we have a comparison of a northern

and southern city Hoover et al. (59) excluded the
skin cancers whose rates, we have just seen, are
greatly affected by differences in latitude. As male
ratios are more likely to be affected by occupational
considerations, we shall consider here only the famel
rates (although Hoover et al. considered both). The
data are given in Table 7. It is to be noted that the
second survey was of one year duration while the
third survey was a three-year survey. This difference
does not affect the comparisons within surveys or
the analyses of the ratio of ratios, but it would affect
the direct comparison of surveys. In Table 7 we
should note that the cities play the roles the sexes
previously played and the surveys play the roles the
populations previously played.
Using the binomial analyses, Hoover et al found

the (Denver to Birmingham) for the second survey
to be 1.02, and for the third survey to be 1.07. Since
the 95% confidence limits (17, 37) for ti in the second
survey (0.91-1.15) entirely covered those for the
third survey (1.02-1.13), they took this as "indicating
no statistically significant differences."
The populations considered here are not pro-

portionately distributed by survey time; the q,k (N)
vary somewhat. They range from 0.539 in the
youngest age group to 1.274 in the oldest age group.
Thus the Poisson analysis is preferred when testing q,

(P) = 1.
The results in Table 7 agree, in the main points,

with Hoover et al. The relative risks of Denver to
Birmingham is found to be 1.02 in the second survey
and 1.07 in the third survey. The asymptotic ML
estimator of the ratio of ratios is found to be 0.969.
The normal deviate test of ti (P) = 1 yield z = - 0.46

Table 6. Analysis of non-melanoma skin cancer incidences by age and sex in Dallas-Fort Worth and Minneapolis-St. Paul.a

Dallas-Fort Worth Minneapolis-St. Paul City Ratios Test of ik (P) = 1
Ratio of Normal

Age Male Female Male Female R1k Rk2k k (P) Yllk E(Y11k1/A = 0) V(YllklA = 0) Zk

15-24 2/164,065 4/181,343 2/148,099 1/172,675 0.90 3.81 0.24 2 2.69 0.4927 -0.27
25-34 42/147,153 38/146,207 11/122,056 16/123,065 3.17 2.00 1.58 42 39.70 5.0458 0.80
35-44 179/120,195 119/121.374 50/ 95,490 30/ 96,216 2.84 3.14 0.90 179 180.50 15.0569 -0.26
45-54 409/107,558 221/111,353 95/ 87,076 71/ 92,051 3.49 2.57 1.35 409 399.53 30.6131 1.62
55-64 556/ 73,342 259/ 83,004 150/ 62,268 102/ 72,159 3.15 2.21 1.43 556 540.28 43.2614 2.31
65-74 480/ 38,868 310/ 55,932 165/ 37,391 130/ 54,722 2.80 2.33 1.20 480 470.51 51.8550 1.25
75-84 261/ 15,739 226/ 29,007 165/ 19,012 133/ 32,195 1.91 1.89 1.01 261 260.40 45.7775 0.01
84+ 47/ 3,360 65/ 7,538 32/ 4,081 40/ 8,328 1.78 1.80 0.99 47 47.07 10,7619 -0.02

k.1. = k2. = (P) = 1976 1940.69 204.8644 z = 2.44
2.73 2.24 1.19

Goodness-of-fit chi-square = 6.316 (7 d.f.)

aData of Scotto et al. (57).
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Table 7. Comparison of the temporal changes of the total cancer incidence in Denver and Birmingham in females by age.a

Second Survey Third Survey City ratios

2nd 3rd Ratio of Normal
Age Denver Birmingham Denver Birmingham survey survey ratios Test of Ik (P) = I deviate
k YllkNllk Y12dNl2k Y2lk/N21k Y22k]N22k Rl.k R2.k + (P) Yllk E(Y1k1d=0) V(Y1IkA=0) Zk

0-14 6/59,583 6/44,466 49/167,152 12/65,960 0.75 1.61 0.46 6 7.74 2.1836 -0.84
15-24 17/37,935 6/28,669 77/109,387 31/45,503 2.14 1.03 2.07 17 14.05 4.3281 1.18
25-34 39/44.580 33/30,500 153/ 83,897 68/34,465 0.81 0.92 0.87 39 40.73 12.9060 -0.34
35-44 80/37,011 70/25,887 396/ 70,569 196/33,498 0.80 0.96 0.83 80 85.27 28.8148 -0.89
45-54 172/28,907 107/18,993 757/ 64,817 413/33,326 1.06 0.94 1.12 172 165.93 53.6524 0.76
55-64 206/22,772 111/13,002 912/ 46,017 462/27,671 1.06 1.19 0.89 206 212.56 57.0846 -0.80
65-74 188/15,487 85/ 7,844 902/ 31.664 522/19,381 1.12 1.06 1.06 188 185.12 50.4732 0.34
74+ 135/ 7,929 55/ 3,337 966/ 23,429 431/12,246 1.03 1.17 0.88 135 139.26 33.0855 -0.65

f1 = 2= (P) 843 850.65 242.5282 z=
1.02 1.07 0.969 -0.46

Goodness-of-fit Chi-Square = 6.484 (7d.f.)

aData of Dorn and Cutler (60), Cutler and Young (61), and Hoover et al (59).

(p 0.323). The goodness of fit test yields a chi-
square of 6.484, with 7 degrees of freedom, so there
is no indication of that the f,k (P)'S vary significantly
over the age groups. Thus this test also concludes
that there is no indication of a significant increase in
the cancer rates among females in Denver as com-
pared to Birmingham in the period following fluori-
dation in Denver. This test also yields a similar non-
significant finding for the male comparison.

I am grateful to Joseph Scotto, John L. Young, and Robert N.
Hoover for making available to me the detailed data used in the
last two examples. I am grateful to Alroy M. Smith for computer
programming and Sue Tiffany for typing of the manuscript.
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